Muhammad Nadeem
LangChain RAG (Retrieval-Augmented Generation) Demo Documentation

This documentation provides an in-depth explanation of a Streamlit application that
integrates LangChain with the LLama 3.2 model and FAISS (Facebook Al
Similarity Search) vector store for Retrieval-Augmented Generation (RAG). The
application leverages LangChain’s functionality for RAG to answer queries by
retrieving relevant information from pre-ingested documents, processing the query
with the LLama 3.2 language model, and displaying responses alongside source
documents.

Project Structure Overview

This application demonstrates Retrieval-Augmented Generation (RAG) by
incorporating a vector store of document embeddings, a language model (LLama
3.2) to process queries, and an interactive front end built using Streamlit. RAG
allows for retrieving pertinent information from document sources and improves
response relevance and accuracy by combining retrieval and generation.

Key Components in Detalil
1. Environment Configuration

« Purpose: Configures Streamlit for display settings and loads necessary
modules and libraries.

. Page Setup: Streamlit’s set_page_config configures the page title, icon, and
layout for a more immersive user interface.

2. Custom CSS Styling

« Purpose: Adds custom styling to enhance the visual appeal and readability of
the Streamlit interface.

« Functionality: This CSS applies styles to the header, footer, portfolio links,
and highlighted document sections, using HTML elements within Streamlit to
achieve professional presentation.

3. Page Header

« Purpose: Presents the application title for branding and identification.



« Design: A styled header centered at the top, created using HTML, helps users
identify the app as a demo of RAG functionality.

4. Document Ingestion and Embedding

« Purpose: Converts raw documents into vector embeddings using a
SentenceTransformer model to facilitate fast and relevant retrieval.

« Functionality:

o Embeddings: The HuggingFaceEmbeddings object is created with the
model all-MiniLM-L6-v2 to generate embeddings of document
content.

o Vector Store: Documents are transformed into vectors and stored in
FAISS, a library designed for fast similarity searches.

o Document Format: The function takes in raw document content,
which is converted into LangChain’s Document format. This format
standardizes data storage and retrieval, making it compatible with the
vector store.

5. Sample Document for Vector Store

« Purpose: Demonstrates how a sample document can be embedded and stored
in FAISS for retrieval.

« Usage: The document contains details about a data scientist’s experience and
technical background, serving as an example of the type of information the
vector store can retrieve and use for query responses.

6. Vector Store and Retriever Creation

« Purpose: Manages the retrieval of documents by setting up the vector store
and a retriever.

« Functionality:

o Vector Store: Created with FAISS to store and retrieve embedded
documents efficiently.

o Retriever: Extracts relevant documents based on query similarity,
passing them as context to the LLM for response generation.



Retriever Configuration: The as_retriever method allows querying the
FAISS vector store, ensuring that relevant documents are readily available for
answering user queries.

7. Language Model Initialization

Purpose: Defines the LLama 3.2 model for generating responses to user
queries.

Configuration: Uses the Ollama LLM interface to access LLama 3.2, which
will process the retrieved documents and user query to generate informed
responses.

8. Retrieval-Augmented Generation (RAG) Chain Setup

Purpose: Combines the retrieval and generation components to form a chain,
which streamlines document retrieval and response generation.

Chain Configuration:

o Uses LangChain’s RetrievalQA.from_chain_type method to create a
chain linking the retriever and LLM.

o Return Source Documents: Enables the inclusion of source
documents in the response, helping users verify the basis of generated
answers.

Functionality: The chain ensures a fluid process where the user query
prompts document retrieval from the vector store, followed by processing
with the LLM to generate a cohesive answer.

9. User Input Handling

Purpose: Captures the user’s query, which will be processed by the RAG
chain.

Functionality: Streamlit’s text_input method provides an interactive field for
users to input queries. When a query is entered, it triggers the RAG chain.

10. Invoking the RAG Chain and Displaying the Response

Purpose: Executes the RAG process for the user’s query and displays the
generated response and relevant source documents.

Process:



o Query Execution: The RAG chain retrieves pertinent documents and
invokes the LLM to process these documents along with the query.

o Response Display: The app displays the generated response, and if
source documents were used, it presents them with highlighted content,
aiding in transparency and context comprehension.

11. Portfolio and Footer Sections
« Purpose: Provides the developer’s portfolio links and personal information.

« Design: The portfolio section displays links to LinkedIn, GitHub, and a
personal website. The footer, fixed at the bottom, contains the designer’s
name for consistent branding.

Application Workflow
1. Environment Setup:

o Initialization: Run the application using Streamlit’s command-line
interface (streamlit run app.py).

o Ul Configuration: The Streamlit page loads with custom layout, title,
icon, and styling.

2. Document Embedding and Vector Store Creation:

o Embedding: The application uses HuggingFace’s
SentenceTransformer to create embeddings for each document.

o Vector Store: FAISS stores these embeddings, allowing efficient
similarity-based retrieval of documents relevant to user queries.

3. Query Submission:

o Users enter their queries into the Streamlit input field, prompting the
app to activate the RAG chain.

o The retriever identifies relevant documents, which are then processed
along with the query by the LLama 3.2 model to generate a response.

4. Response and Document Display:



o Result Output: The response from the LLM is displayed directly in the
Streamlit interface.

o Source Documents: The app highlights relevant documents used in
generating the response, presenting them with a background color to
make them distinguishable.

5. Portfolio and Contact Information:

o Links to the developer’s professional profiles are available at the
bottom of the interface, accessible to users throughout the session.

Considerations for Running the Model Locally

Since LLama 3.2 (3B parameters) requires a significant amount of computational
resources, ensure the local environment has adequate memory and processing
capabilities. Dependencies, including FAISS, SentenceTransformers, and
LangChain, should be correctly installed and configured.

Key Functionalities Recap

« Vector Store Setup: Efficiently stores document embeddings and retrieves
relevant content for query processing.

« RAG Chain: Combines retrieval and generation in a cohesive workflow that
answers queries while citing document sources.

« LLM Integration: LLama 3.2 processes query content and retrieved
documents, providing contextually accurate responses.

. Portfolio Section: Showcases developer information, enhancing credibility
and contact options.

This documentation provides a complete understanding of how the LangChain RAG
Demo application functions, including setup, usage, and implementation details for
developers and end users.



