
Muhammad Nadeem 

LangChain RAG (Retrieval-Augmented Generation) Demo Documentation 

This documentation provides an in-depth explanation of a Streamlit application that 

integrates LangChain with the LLama 3.2 model and FAISS (Facebook AI 

Similarity Search) vector store for Retrieval-Augmented Generation (RAG). The 

application leverages LangChain’s functionality for RAG to answer queries by 

retrieving relevant information from pre-ingested documents, processing the query 

with the LLama 3.2 language model, and displaying responses alongside source 

documents. 

 

Project Structure Overview 

This application demonstrates Retrieval-Augmented Generation (RAG) by 

incorporating a vector store of document embeddings, a language model (LLama 

3.2) to process queries, and an interactive front end built using Streamlit. RAG 

allows for retrieving pertinent information from document sources and improves 

response relevance and accuracy by combining retrieval and generation. 

Key Components in Detail 

1. Environment Configuration 

• Purpose: Configures Streamlit for display settings and loads necessary 

modules and libraries. 

• Page Setup: Streamlit’s set_page_config configures the page title, icon, and 

layout for a more immersive user interface. 

2. Custom CSS Styling 

• Purpose: Adds custom styling to enhance the visual appeal and readability of 

the Streamlit interface. 

• Functionality: This CSS applies styles to the header, footer, portfolio links, 

and highlighted document sections, using HTML elements within Streamlit to 

achieve professional presentation. 

3. Page Header 

• Purpose: Presents the application title for branding and identification. 



• Design: A styled header centered at the top, created using HTML, helps users 

identify the app as a demo of RAG functionality. 

4. Document Ingestion and Embedding 

• Purpose: Converts raw documents into vector embeddings using a 

SentenceTransformer model to facilitate fast and relevant retrieval. 

• Functionality: 

o Embeddings: The HuggingFaceEmbeddings object is created with the 

model all-MiniLM-L6-v2 to generate embeddings of document 

content. 

o Vector Store: Documents are transformed into vectors and stored in 

FAISS, a library designed for fast similarity searches. 

o Document Format: The function takes in raw document content, 

which is converted into LangChain’s Document format. This format 

standardizes data storage and retrieval, making it compatible with the 

vector store. 

5. Sample Document for Vector Store 

• Purpose: Demonstrates how a sample document can be embedded and stored 

in FAISS for retrieval. 

• Usage: The document contains details about a data scientist’s experience and 

technical background, serving as an example of the type of information the 

vector store can retrieve and use for query responses. 

6. Vector Store and Retriever Creation 

• Purpose: Manages the retrieval of documents by setting up the vector store 

and a retriever. 

• Functionality: 

o Vector Store: Created with FAISS to store and retrieve embedded 

documents efficiently. 

o Retriever: Extracts relevant documents based on query similarity, 

passing them as context to the LLM for response generation. 



• Retriever Configuration: The as_retriever method allows querying the 

FAISS vector store, ensuring that relevant documents are readily available for 

answering user queries. 

7. Language Model Initialization 

• Purpose: Defines the LLama 3.2 model for generating responses to user 

queries. 

• Configuration: Uses the Ollama LLM interface to access LLama 3.2, which 

will process the retrieved documents and user query to generate informed 

responses. 

8. Retrieval-Augmented Generation (RAG) Chain Setup 

• Purpose: Combines the retrieval and generation components to form a chain, 

which streamlines document retrieval and response generation. 

• Chain Configuration: 

o Uses LangChain’s RetrievalQA.from_chain_type method to create a 

chain linking the retriever and LLM. 

o Return Source Documents: Enables the inclusion of source 

documents in the response, helping users verify the basis of generated 

answers. 

• Functionality: The chain ensures a fluid process where the user query 

prompts document retrieval from the vector store, followed by processing 

with the LLM to generate a cohesive answer. 

9. User Input Handling 

• Purpose: Captures the user’s query, which will be processed by the RAG 

chain. 

• Functionality: Streamlit’s text_input method provides an interactive field for 

users to input queries. When a query is entered, it triggers the RAG chain. 

10. Invoking the RAG Chain and Displaying the Response 

• Purpose: Executes the RAG process for the user’s query and displays the 

generated response and relevant source documents. 

• Process: 



o Query Execution: The RAG chain retrieves pertinent documents and 

invokes the LLM to process these documents along with the query. 

o Response Display: The app displays the generated response, and if 

source documents were used, it presents them with highlighted content, 

aiding in transparency and context comprehension. 

11. Portfolio and Footer Sections 

• Purpose: Provides the developer’s portfolio links and personal information. 

• Design: The portfolio section displays links to LinkedIn, GitHub, and a 

personal website. The footer, fixed at the bottom, contains the designer’s 

name for consistent branding. 

 

Application Workflow 

1. Environment Setup: 

o Initialization: Run the application using Streamlit’s command-line 

interface (streamlit run app.py). 

o UI Configuration: The Streamlit page loads with custom layout, title, 

icon, and styling. 

2. Document Embedding and Vector Store Creation: 

o Embedding: The application uses HuggingFace’s 

SentenceTransformer to create embeddings for each document. 

o Vector Store: FAISS stores these embeddings, allowing efficient 

similarity-based retrieval of documents relevant to user queries. 

3. Query Submission: 

o Users enter their queries into the Streamlit input field, prompting the 

app to activate the RAG chain. 

o The retriever identifies relevant documents, which are then processed 

along with the query by the LLama 3.2 model to generate a response. 

4. Response and Document Display: 



o Result Output: The response from the LLM is displayed directly in the 

Streamlit interface. 

o Source Documents: The app highlights relevant documents used in 

generating the response, presenting them with a background color to 

make them distinguishable. 

5. Portfolio and Contact Information: 

o Links to the developer’s professional profiles are available at the 

bottom of the interface, accessible to users throughout the session. 

 

Considerations for Running the Model Locally 

Since LLama 3.2 (3B parameters) requires a significant amount of computational 

resources, ensure the local environment has adequate memory and processing 

capabilities. Dependencies, including FAISS, SentenceTransformers, and 

LangChain, should be correctly installed and configured. 

 

Key Functionalities Recap 

• Vector Store Setup: Efficiently stores document embeddings and retrieves 

relevant content for query processing. 

• RAG Chain: Combines retrieval and generation in a cohesive workflow that 

answers queries while citing document sources. 

• LLM Integration: LLama 3.2 processes query content and retrieved 

documents, providing contextually accurate responses. 

• Portfolio Section: Showcases developer information, enhancing credibility 

and contact options. 

This documentation provides a complete understanding of how the LangChain RAG 

Demo application functions, including setup, usage, and implementation details for 

developers and end users. 

 


